Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Chinese Journal of Cellular and Molecular Immunology ; (12): 410-415, 2023.
Article in Chinese | WPRIM | ID: wpr-981881

ABSTRACT

Objective To investigate the protective effect of artesunate on hypoxic-ischemic brain damage (HIBD) and its mechanism in neonatal rats. Methods 7-day-old neonatal SD rats were randomly divided into sham operation group, model group, artesunate 5 mg/kg group, artesunate 10 mg/kg group, artesunate 20 mg/kg group and dexamethasone 6 mg/kg group, with 18 rats in each group. HIBD models were established in groups except for the sham operation group. The sham operation group only needed to separate the left common carotid artery without ligation and nitrogen-oxygen mixed gas ventilation. Each group was injected with drug intraperitoneally right after surgery and the rats in the sham operation group and the model group were injected with an equal volume of normal saline (once a day for a total of 5 times). One hour after the last injection, the rats in each group were scored for neurological defects. After the rats were sacrificed, the brain water content was measured and the pathological changes of the brain tissues of rats were observed. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect the neuronal cell apoptosis, and ELISA was applied to detect the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood of each group of rats. Western blot analysis was adopted to detect the protein expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1 in the rats brain tissues of each group. Results Compared with the model group, the neurological deficit score was decreased; the pathological damage of brain tissues was relieved; the brain water content was significantly reduced; the apoptosis number of hippocampal neurons was decreased significantly; the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood were significantly reduced; the protein expression levels of NLRP3, ASC and caspase-1 were significantly lowered in the middle-dose and high-dose artesunate groups and the dexamethasone group. Conclusion Artesunate can improve the neurological function, relieve the brain damage, and alleviate the brain edema in neonatal rats with HIBD. It can protect the HIBD, which may be related to the inhibition of NLRP3 inflammasome activation and reduction of inflammatory cytokine secretion.


Subject(s)
Animals , Rats , Animals, Newborn , Artesunate/pharmacology , Brain/metabolism , Caspases/metabolism , Dexamethasone , Hypoxia-Ischemia, Brain/pathology , Inflammasomes , Interleukin-6/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Water/metabolism
2.
China Journal of Chinese Materia Medica ; (24): 1498-1509, 2023.
Article in Chinese | WPRIM | ID: wpr-970621

ABSTRACT

To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.


Subject(s)
Rhizosphere , Rheum , Droughts , Soil , Catechin , Emodin , Bacteria/metabolism , Water/metabolism , Firmicutes , Soil Microbiology
3.
Acta Physiologica Sinica ; (6): 216-230, 2023.
Article in Chinese | WPRIM | ID: wpr-980999

ABSTRACT

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Subject(s)
Humans , Bartter Syndrome/metabolism , Pseudohypoaldosteronism/metabolism , Potassium/metabolism , Aldosterone/metabolism , Hypokalemia/metabolism , Gitelman Syndrome/metabolism , Hyperkalemia/metabolism , Clinical Relevance , Epithelial Sodium Channels/metabolism , Kidney Tubules, Distal/metabolism , Sodium/metabolism , Hypertension , Alkalosis/metabolism , Water/metabolism , Kidney/metabolism
4.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 94-107, ene. 2022. ilus
Article in English | LILACS | ID: biblio-1372487

ABSTRACT

Basil (Ocimum basilicumL.) is a medicinal species used in several areas, such as food, medicines and cosmetics, and the understanding of its physiological behavior under environmental conditions is of paramount importance for the improvement of cultivation methods. The objective of this study was to evaluate the influence of different water availability under physiological, biochemical and metabolic characteristics, in three distinct genotypes: 'Alfavaca basilicão', 'Gennaro de menta' and 'Grecco à palla', during two different phenological stages (vegetative and reproductive). It was found that the water deficit promotes physiological changes to tolerate water stress, and the studied genotypes have different routes to achieve this physiological tolerance, which culminates in a distinct accumulation of metabolites in plants, and can be considered interesting if the final product is the production of essential oils.


La albahaca (Ocimum basilicum L.) es una planta medicinal utilizada en varias áreas: alimenticia, medicinal e industria cosmética; es de suma importancia el entendimiento de su comportamiento fisiológico bajo diferentes condiciones ambientales con el fin de mejorar los procesos del cultivo. El objetivo de este estudio fue evaluar la influencia de diferentes disponibilidades hídricas en las características fisiológicas, bioquímicas y metabólicas en tres genotipos de albahaca: "Alfavaca basilicão", "Gennaro de menta" y "Grecco à palla" durante dos etapas fenológicas (vegetativa y reproductiva). Fue encontrado que el déficit hídrico promueve cambios fisiológicos con el fin de tolerar el estrés hídrico. Los genotipos estudiados presentaron diferentes rutas para alcanzar esta tolerancia fisiológica, la cual culmina con distintas acumulaciones de metabolitos en las plantas, y puede ser considerado interesante si el producto final es la producción de aceites esenciales.


Subject(s)
Plants, Medicinal/metabolism , Oils, Volatile/metabolism , Ocimum basilicum/metabolism , Plants, Medicinal/physiology , Water/metabolism , Ocimum basilicum/physiology , Soil Moisture
5.
Journal of Forensic Medicine ; (6): 67-70, 2022.
Article in English | WPRIM | ID: wpr-984097

ABSTRACT

OBJECTIVES@#To study whether diatoms can enter the body through the lymphatic system of the digestive tract.@*METHODS@#Twenty experimental rabbits were divided into the test group and the control group randomly, and intragastric administration was performed with 20 mL water sample from the Pearl River and 20 mL ultrapure water, respectively. After 30 min, lymph, lungs, livers and kidneys were extracted for the diatom test. The concentration, size and type of diatoms were recorded.@*RESULTS@#The concentration of diatoms of the test group was higher than that of the control group (P<0.05). In the test group, Stephanodiscus, Coscinodiscus, Cyclotella, Melosira, Nitzschia, Synedra, Cymbella, and Navicula were detected; in the control group, Stephanodiscus, Coscinodiscus and Cyclotella were detected. The long diameter and the short diameter of diatoms of the test group were higher than those of the control group (P<0.05). In the test group, 1-2 diatoms were detected in 3 lung samples and 2 liver samples, which were Stephanodiscus or Cyclotella, and no diatoms were detected in the kidney samples; in the control group, 1-2 diatoms were detected in 2 lung samples and 3 liver samples, which were Stephanodiscus or Coscinodiscus, and no diatoms were detected in the kidney samples.@*CONCLUSIONS@#Diatoms can enter the body through the lymphatic fluid, which is one of the reasons for the presence of diatoms in tissues and organs of non-drowning cadavers.


Subject(s)
Animals , Rabbits , Diatoms , Drowning , Gastrointestinal Tract , Lung , Lymphatic System , Water/metabolism
6.
Journal of Forensic Medicine ; (6): 59-66, 2022.
Article in English | WPRIM | ID: wpr-984096

ABSTRACT

OBJECTIVES@#The metabolomics technique of LC-MS/MS combined with data analysis was used to detect changes and differences in metabolic profiles in the vitreous humor of early rat carcasses found in water, and to explore the feasibility of its use for early postmortem submersion interval (PMSI) estimation and the cause of death determination.@*METHODS@#The experimental model was established in natural lake water with 100 SD rats were randomly divided into a drowning group (n=50) and a postmortem (CO2 suffocation) immediately submersion group (n=50). Vitreous humor was extracted from 10 rats in each group at 0, 6, 12, 18 and 24 h postmortem for metabolomics analyses, of which 8 were used as the training set to build the model, and 2 were used as test set. PCA and PLS multivariate statistical analysis were performed to explore the differences in metabolic profiles among PMSI and causes of death in the training set samples. Then random forest (RF) algorithm was used to screen several biomarkers to establish a model.@*RESULTS@#PCA and PLS analysis showed that the metabolic profiles had time regularity, but no differences were found among different causes of death. Thirteen small molecule biomarkers with good temporal correlation were selected by RF algorithm. A simple PMSI estimation model was constructed based on this indicator set, and the data of the test samples showed the mean absolute error (MAE) of the model was 0.847 h.@*CONCLUSIONS@#The 13 metabolic markers screened in the vitreous humor of rat corpses in water had good correlations with the early PMSI. The simplified PMSI estimation model constructed by RF can be used to estimate the PMSI. Additionally, the metabolic profiles of vitreous humor cannot be used for early identification of cause of death in water carcasses.


Subject(s)
Animals , Rats , Biomarkers/metabolism , Cadaver , Chromatography, Liquid , Immersion , Postmortem Changes , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Vitreous Body/metabolism , Water/metabolism
7.
Acta Physiologica Sinica ; (6): 681-689, 2021.
Article in Chinese | WPRIM | ID: wpr-887702

ABSTRACT

Prostaglandin E2 (PGE2), a bioactive lipid mediator, is one of the most important locally acting factors involved in a variety of physiological and pathophysiological processes. PGE2 binds with four EP receptors (EP1-4) to activate G protein-coupled receptor signaling responses. Recent functional and molecular studies have revealed that PGE2 plays an essential role in regulation of renal fluid transport via a variety of mechanisms. The water balance mainly depends on the regulation of aquaporin-2 (AQP2) by arginine vasopressin (AVP) in renal collecting duct principal cells. In recent years, increasing evidence suggests that PGE2 plays an important role in renal water reabsorption in the collecting ducts. In this paper, we reviewed the role of PGE2 and its receptors in the regulation of water reabsorption in the kidney, which may provide a new therapeutic strategy for many diseases especially nephrogenic diabetes insipidus.


Subject(s)
Humans , Aquaporin 2/metabolism , Biological Transport , Diabetes Insipidus, Nephrogenic , Dinoprostone , Water/metabolism
8.
Braz. j. biol ; 79(1): 53-62, Jan.-Mar 2019. tab, graf
Article in English | LILACS | ID: biblio-984007

ABSTRACT

Abstract In this study, the activities of antioxidant enzymes, photosynthetic pigments, proline and carbohydrate contents in Pitcairnia encholirioides under ex vitro conditions of water deficit were evaluated. Results show that plants under progressive water stress, previously in vitro cultured in media supplemented with 30 g L-1 sucrose and GA3, accumulated more proline and increased peroxidase (POD) activity and the contents of photosynthetic pigments and carbohydrates. For plants previously in vitro cultured with 15 g L-1 sucrose and NAA, no differences were found for proline content and there were reductions in activities of peroxidase (POD), catalase (CAT) and poliphenoloxidase (PPO), and in contents of carbohydrates, with progress of ex vitro water deficit. After rehydration, plants showed physiological recovery, with enzymatic activities and contents of metabolites similar to those found in the controls not submitted to dehydration, regardless of the previous in vitro culture conditions. These results show that micropropagated P. encholirioides has high tolerance to dehydration once in ex vitro conditions, which can ensure the survival of plants from tissue culture when transferred to its natural environment, emphasizing the importance of such biotechnology for the propagation of endangered species.


Resumo Neste estudo, foram avaliadas as atividades de enzimas antioxidantes, pigmentos fotossintéticos, conteúdo de prolina e carboidratos em Pitcairnia encholirioides sob déficit hídrico em condições ex vitro. Os resultados mostraram que as plantas sob estresse hídrico progressivo, previamente cultivadas in vitro em meio de cultura suplementado com 30 g L-1 de sacarose e GA3 acumularam mais prolina e aumentaram a atividade da peroxidase (POD) e os teores de pigmentos fotossintéticos e carboidratos. Para plantas previamente cultivadas in vitro com 15 g L-1 de sacarose e ANA, não foram encontradas diferenças nos conteúdos de prolina e houve reduções nas atividades da peroxidase (POD), catalase (CAT) e polifenoloxidase (PPO), e no conteúdo de carboidratos, com o progresso do déficit hídrico ex vitro. Após a reidratação, as plantas apresentaram recuperação fisiológica, com atividades enzimáticas e conteúdo de metabólitos semelhantes aos encontrados nos controles não sujeitos à desidratação, independentemente das condições de cultivo in vitro. Estes resultados mostram que P. encholirioides micropropagada tem alta tolerância à desidratação uma vez em condições ex vitro, o que pode garantir a sobrevivência de plantas provenientes da cultura de tecidos quando transferidas para seu ambiente natural, enfatizando a importância desta biotecnologia para a propagação de espécies ameaçadas.


Subject(s)
Photosynthesis/physiology , Proline/metabolism , Water/metabolism , Bromeliaceae/physiology , Droughts , Antioxidants/metabolism , Pigments, Biological , Plant Proteins/metabolism , Bromeliaceae/enzymology , Carbohydrate Metabolism , Longevity
9.
Braz. j. microbiol ; 49(1): 45-53, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889199

ABSTRACT

ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1 g) and osmotic potential (0.54 MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.


Subject(s)
Cucurbita/microbiology , Mycorrhizae/physiology , Fungi/physiology , Soil/chemistry , Water/analysis , Water/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Biomass , Cucurbita/growth & development , Cucurbita/physiology , Mycorrhizae/isolation & purification , Mycorrhizae/classification , Desert Climate , Salinity , Droughts , Fungi/isolation & purification , Fungi/classification , Mexico
10.
An. acad. bras. ciênc ; 89(4): 3051-3066, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-886847

ABSTRACT

ABSTRACT Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.


Subject(s)
Stress, Physiological/physiology , Water/physiology , Carthamus tinctorius/physiology , Water/metabolism , Principal Component Analysis , Carthamus tinctorius/growth & development , Carthamus tinctorius/metabolism , Droughts , Fluid Therapy
11.
An. acad. bras. ciênc ; 89(4): 3039-3050, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-886844

ABSTRACT

ABSTRACT The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%), and evaluated at four different time (T- 30, 60, 90, and 120 days). During the experimental period, seedlings presented the highest values for carboxylation efficiency of Rubisco (A/Ci), intrinsic water use efficiency (IWUE = A/gs), chlorophyll index, and stomatal opening, when grown in the substrate with 75% WRC, but the stomatal index (SI) was less the 25% WRC. The efficiency of photosystem II was not significantly altered by the treatments. Comparison between the extreme treatments in terms of water availability, represented by 25% and 100% WRC, represent stress conditions for the species. Water availability causes a high activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the plant.


Subject(s)
Water/metabolism , Seedlings/metabolism , Fabaceae/metabolism , Antioxidants/metabolism , Time Factors , Carbon Dioxide/metabolism , Random Allocation , Chlorophyll/metabolism , Plant Stomata/metabolism , Fabaceae/classification , Fabaceae/physiology
12.
Biol. Res ; 49: 1-9, 2016. ilus, graf
Article in English | LILACS | ID: lil-774433

ABSTRACT

BACKGROUND: Cryptogamic vegetation dominates the ice-free areas along the Antarctic Peninsula. The two mosses Sanionia uncinata and Polytrichastrum alpinum inhabit soils with contrasting water availability. Sanionia uncinata grows in soil with continuous water supply, while P. alpinum grows in sandy, non-flooded soils. Desiccation and rehydration experiments were carried out to test for differences in the rate of water loss and uptake, with non-structural carbohydrates analysed to test their role in these processes. RESULTS: Individual plants of S. uncinata lost water 60 % faster than P. alpinum; however, clumps of S. uncinata took longer to dry than those of P. alpinum (11 vs. 5 h, respectively). In contrast, rehydration took less than 10 min for both mosses. Total non-structural carbohydrate content was higher in P. alpinum than in S. uncinata, but sugar levels changed more in P. alpinum during desiccation and rehydration (60-50 %) when compared to S. uncinata. We report the presence of galactinol (a precursor of the raffinose family) for the first time in P. alpinum. Galactinol was present at higher amounts than all other non-structural sugars. CONCLUSIONS: Individual plants of S. uncinata were not able to retain water for long periods but by growing and forming carpets, this species can retain water the longest. In contrast individual P. alpinum plants required more time to lose water than S. uncinata, but as moss cushions they suffered desiccation faster than the later. On the other hand, both species rehydrated very quickly. We found that when both mosses lost 50 % of their water, carbohydrates content remained stable and the plants did not accumulate non-structural carbohydrates during the desiccation prosses as usually occurs in vascular plants. The raffinose family oligosaccarides decreased during desiccation, and increased during rehydration, suggesting they function as osmoprotectors.


Subject(s)
Bryopsida/metabolism , Carbohydrate Metabolism/physiology , Carbohydrates/analysis , Water/metabolism , Analysis of Variance , Antarctic Regions , Dehydration , Disaccharides/analysis , Germ Cells, Plant , Time Factors , Water/analysis
13.
Rev. chil. pediatr ; 86(6): 386-392, dic. 2015. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-771655

ABSTRACT

La evaluación de las características de transporte de solutos y agua del peritoneo es esencial para adecuar la prescripción dialítica en pacientes portadores de enfermedad renal crónica. Existen una serie de modelos para realizar esta evaluación. El test de equilibrio peritoneal (PET) evalúa la capacidad de transporte del peritoneo clasificando a los pacientes en 4 categorías de transportador: alto, promedio alto, promedio bajo y bajo. El short PET realiza la misma evaluación en solo 2 h, y ha sido validado en pacientes pediátricos. Por otro lado, el MiniPET otorga información adicional al evaluar la capacidad de transporte de agua libre por los poros ultrapequeños, y el Accelerated Peritoneal Examination Time (APEX) evalúa el punto de intersección de las curvas de equilibrio de urea y glucosa, y ha sido propuesto como el tiempo de permanencia óptimo para lograr una UF adecuada. Se analiza la información actual sobre estos métodos diagnósticos, en particular los últimos aportes de la literatura respecto al transporte de agua libre vía aquaporinas, que podrían representar una herramienta importante para optimizar el transporte de agua y solutos en pacientes en diálisis peritoneal crónica, en particular respecto al pronóstico cardiovascular.


An evaluation of the characteristics of peritoneal solute and water transport is essential to assess the suitability of prescribing dialysis in patients suffering from chronic renal disease. There are currently a series of models to perform this evaluation. The peritoneal equilibration test (PET) evaluates the peritoneal transport capacity, classifying the patients into four transport categories: high, high-average, low-average, and low. The short PET enables the same evaluation to be made in only 2 hours, and has been validated in paediatric patients. On the other hand, the MiniPET provides additional information by evaluating the free water transport capacity by the ultra-small pores, and the Accelerated Peritoneal Examination Time (APEX) evaluates the time when the glucose and urea equilibration curves cross, and has been proposed as the optimum dwell time to achieve adequate ultrafiltration. An analysis is presented on the current information on these diagnostic methods as regards free water transport via aquaporins, which could be an important tool in optimising solute and water transport in patients on chronic peritoneal dialysis, particularly as regards the cardiovascular prognosis.


Subject(s)
Humans , Child , Peritoneal Dialysis/methods , Aquaporins/metabolism , Renal Insufficiency, Chronic/therapy , Models, Biological , Biological Transport , Water/metabolism , Dialysis Solutions
14.
Braz. j. microbiol ; 45(3): 1105-1112, July-Sept. 2014. graf, tab
Article in English | LILACS | ID: lil-727045

ABSTRACT

Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to -14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to -8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was -8.4 MPa on glycerol amended media and -5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications.


Subject(s)
Fusarium/growth & development , Osmotic Pressure , Water/metabolism , Arachis/microbiology , Fusarium/drug effects , Fusarium/radiation effects , Glycerol/metabolism , Plant Diseases/microbiology , Polyethylene Glycols/metabolism , Soil Microbiology , Sodium Chloride/metabolism , Temperature
15.
Braz. j. biol ; 74(3,supl.1): S199-S206, 8/2014. graf
Article in English | LILACS | ID: lil-732268

ABSTRACT

Aquatic plants are able to alter their morphology in response to environmental condition variation, such as water level fluctuations. The aim of this study was to evaluate the effect of water level on Sagittaria montevidensis morphology through measures of vegetative structures formed in drought and flood periods. We hypothesised that the plant height and the biomass of S. montevidensis leaves will increase during flood periods, while the biomass and diameter of petioles, and the basal plant area will increase during dry periods. We sampled a total amount of 270 individuals in nine sediment banks per visit, totalling 1080 plants. In order to compare plant morphology between dry and flood periods, we measured the water level in each bank and took the following variables for each plant: diameter, height and diameter of the biggest petiole. In order to compare biomass allocation between dry and flood periods, we sampled a total amount of 90 individuals in nine sediment banks per visit, totalling 360 plants. Plants were dried and weighed in the laboratory. All measured morphologic traits, as well as the biomass of leaf blades and petioles, were higher during flood periods, indicating that water level highly influences the morphology of S. montevidensis individuals. Our results suggest that these morphological responses allow survival and maintenance of S. montevidensis populations under environmental stress. These results can be linked to the invasive potential of S. montevidensis and sheds light on basic management practices that may be applied in the future.


As plantas aquáticas são capazes de alterar a sua morfologia em resposta a variações nas condições ambientais, tais como mudanças no nível da água. Nosso objetivo foi avaliar o efeito do nível da água na morfologia de Sagittaria montevidensis através de medidas de estruturas vegetativas formadas em períodos de seca e de cheia. Nós hipotetizamos que a altura dos indivíduos e a biomassa das folhas de S. montevidensis aumentarão durante períodos de cheia, enquanto a biomassa e diâmetro dos pecíolos, além da área basal da planta, aumentarão durante períodos de seca. Nós amostramos um total de 270 indivíduos, distribuídos em nove bancos de sedimento, por visita, totalizando 1080 plantas. Para comparar a morfologia das plantas entre os períodos de cheia e seca nós medimos o nível de água em cada banco e tomamos as seguintes medidas para cada planta: diâmetro, altura e diâmetro do maior pecíolo. Para comparar a alocação de biomassa entre os períodos de cheia e seca nós amostramos um total de 90 indivíduos em nove bancos de sedimento por visita, totalizando 360 plantas. As plantas foram secas em estufa e pesadas em laboratório. As plantas foram maiores no período de cheia e também apresentaram maior número e biomassa de folhas, maior diâmetro e biomassa de pecíolos e maiores áreas basais das rosetas. Nós concluímos que o nível da água influencia muito na morfologia de S. montevidensis. Nossos resultados sugerem que essas respostas morfológicas podem permitir a sobrevivência e manutenção de populações de S. montevidensis em estresse ambiental. Esses resultados podem ser ligados ao potencial invasivo de S. montevidensis e lançam luzes sobre práticas de manejo que poderão ser aplicadas no futuro.


Subject(s)
Adaptation, Physiological/physiology , Biomass , Plant Leaves/growth & development , Sagittaria/growth & development , Water/metabolism , Plant Leaves/anatomy & histology , Seasons , Sagittaria/anatomy & histology
16.
Acta odontol. latinoam ; 26(3): 131-137, dic. 2013. ilus, tab
Article in English | LILACS | ID: lil-761864

ABSTRACT

El objetivo de este estudio fue comparar la tasa de filtración ex vivo (conductancia hidráulica) en discos de dentina humana tratados mecánicamente con fresas de diamante de diferente granulometría y carbide con o sin grabado ácido. Método: 60terceros molares sanos recientemente extraídos de pacientes entre 18-30 años, fueron limpiados, desinfectados (0.1% timol) e incluidos en bloques de resina epóxica. Los discos de dentinase obtuvieron mediante la reducción de la superficie oclusal con instrumentos rotativos cilíndricos, formando los siguientes nueve grupos de 12 muestras c/u: 1: grano fino (FG); 2: granomedio (MG); 3: grano grueso (CG); 4: fresas de carburotungsteno (C); 5: FG con grabado ácido (AO); 6: GM con AO;7: GG con AO; 8: C con AO; 9: sólo grabado ácido. Se determinó la conductancia hidráulica en el modelo experimental bajo presión constante de 200 mm de altura de H2O. No seobservaron diferencias entre la conductancia hidráulica entre los diferentes tipos de fresas (p = 0,5).Se encontraron diferencias en la conductancia hidráulica de discos de dentina con y sin grabado ácido (p < 0,001). El tipo de fresa no afecta la conductacia hidráulica dentinaria.El grabado ácido aumenta significativamente la conductanciahidráulica dentinaria


Subject(s)
Humans , Adolescent , Young Adult , Acid Etching, Dental/methods , Dentin Permeability , Dentin Permeability/physiology , Phosphoric Acids/pharmacology , Water/metabolism , Carbon/chemistry , Dentin , Smear Layer
17.
Biol. Res ; 46(2): 121-130, 2013. ilus
Article in English | LILACS | ID: lil-683988

ABSTRACT

Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.


Subject(s)
Desiccation/methods , Lipid Peroxidation/physiology , Peas/physiology , Plant Roots/metabolism , Seeds/physiology , Water/metabolism , Antioxidants/metabolism , Germination/physiology , NAD , Oxidative Stress , Oxidoreductases/metabolism , Peas/metabolism , Phosphofructokinases/metabolism , Tissue Survival/physiology
18.
Indian J Biochem Biophys ; 2012 Feb; 49(1): 63-70
Article in English | IMSEAR | ID: sea-140220

ABSTRACT

The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress.


Subject(s)
Catalase/metabolism , Catalase/radiation effects , Chlorophyll/metabolism , Chlorophyll/radiation effects , Dehydration , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/radiation effects , Magnetic Fields , Peroxidases/metabolism , Peroxidases/radiation effects , Photosynthesis/radiation effects , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/radiation effects , Rain , Seedlings/growth & development , Seedlings/radiation effects , Seeds/radiation effects , Soil , Superoxide Dismutase/metabolism , Superoxide Dismutase/radiation effects , Water/metabolism , Zea mays/growth & development
19.
Pakistan Journal of Pharmaceutical Sciences. 2011; 24 (4): 459-468
in English | IMEMR | ID: emr-137544

ABSTRACT

Solid dispersion technique is widely used to improve the dissolution rate of drugs. Most investigators relied on the in-vitro characterization and considered the enhanced dissolution as an indication of improved bioavailability. The current study investigated the effects of binary and ternary solid dispersions of gliclazide with polyethylene glycol 6000 [PEG 6000] and/or pluronic F68 [PL F68] on the dissolution of gliclazide. The study also investigated the intestinal absorption in presence of solid dispersion components. The latter employed the in-situ rabbit intestinal perfusion technique. Preparation of binary solid dispersion with PEG 6000 or PL F68 significantly enhanced the dissolution rate compared to pure drug. The ternary solid dispersion of gliclazide with both polymers resulted in rapid drug dissolution with most drug being released in the first five minutes. The intestinal perfusion indicated the possibility of complete drug absorption from the small intestine. This, together with slow dissolution of pure drug suggested that the absorption of gliclazide is dissolution rate limited. The presence of PEG 6000 did not alter the intestinal absorption but PL F68 showed a trend of enhanced intestinal absorption of the drug. Ternary solid dispersion can thus provide rapid absorption due to rapid dissolution and potential increase in intestinal permeability


Subject(s)
Animals , Male , Intestinal Absorption/drug effects , Adjuvants, Pharmaceutic , Poloxamer/pharmacology , Biological Availability , Calorimetry, Differential Scanning , Colon/metabolism , Polyethylene Glycols , Rabbits , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Transition Temperature , Water/metabolism , X-Ray Diffraction
20.
Indian J Biochem Biophys ; 2010 Oct; 47(5): 311-318
Article in English | IMSEAR | ID: sea-135282

ABSTRACT

Magnetic seed treatment is one of the physical pre-sowing seed treatments to enhance the performance of crop plants. In our earlier experiment, we found significant increase in germination and vigour characteristics of maize (Zea mays L.) seeds subjected to magnetic fields. Among various combinations of magnetic field (MF) strength and duration, best results were obtained with MF of 100 mT for 2 h and 200 mT for 1 h exposure. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions. Thus, in the present study, changes in water uptake during imbibition and its distribution and activities of germinating enzymes during germination were investigated in maize seeds exposed to static magnetic fields of 100 and 200 mT for 2 and 1 h respectively by nuclear magnetic resonance (NMR) spectroscopy. The magnetically-exposed seed showed higher water uptake in phase II and III than unexposed seed. The longitudinal relaxation time T1 of seed water showed significantly higher values and hence greater molecular mobility of cellular water in magnetically-exposed seeds as compared to unexposed. Component analysis of T2 relaxation times revealed the early appearance of hydration water with least mobility and higher values of relaxation times of cytoplasmic bulk water and hydration water in magnetically-exposed over unexposed seeds. Activities of -amylase, dehydorgenase and protease during germination were higher in magnetically-exposed seeds as compared to unexposed. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions.


Subject(s)
Electromagnetic Fields , Enzyme Activation/radiation effects , Germination/physiology , Germination/radiation effects , Peptide Hydrolases/metabolism , Radiation Dosage , Seeds/metabolism , Seeds/radiation effects , Tissue Distribution , Water/metabolism , Zea mays/metabolism , Zea mays/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL